San Bernardino Valley College
Curriculum Approved: SPRING 2000
Last updated: April 10, 2002

I. CATALOG DESCRIPTION:

A. Department Information:

Division: Science and Math
Department: Computer Science
Course ID: CS 130
Course Title: Applied Computer Logic
Units: 3
Lecture: 3 Hours
Laboratory: None
Prerequisite: CS 110
B. Catalog and Schedule Description:

An introduction to digital systems. Topics include Boolean algebra, truth tables, logic gates, number systems and codes. Karnaugh maps, flip-flops, counters and registers, digital arithmetic, combinational logic and functions.
II. NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: One
III. EXPECTED OUTCOMES FOR STUDENTS:

Upon completion of the course the student should be able to:
A. Understand and use numerical representations in digital systems

1. Binary numbers
2. Octal numbers
3. Hexadecimal numbers
4. Parallel versus serial representation
B. Recognize and convert binary codes using
5. Weighted and Nonweighted binary codes
6. Error-detecting and error-correcting codes
7. Truth tables
8. DeMorgan's theorems
C. Construct simple logic gates
9. AND/OR/NOT gates
10. NOR/NAND gates
11. Exclusive-OR and exclusive-NOR gates
12. Converting gates and using inverters
13. Combining logic gates
D. Design simple combinational logic circuits using
14. The Karnaugh map method
15. Sum of product forms
16. Product of sum forms
17. Logic circuits with multiple outputs
E. Design simple flip-flops
F. Understand digital arithmetic: operations and circuits
G. Compare and distinguish counters and registers
H. Compare and distinguish different types of memory devices
I. Recognize the different components of the microprocessor

IV. COURSE CONTENT:

A. Numerical representations in digital systems

1. Binary numbers
2. Octal numbers
3. Hexadecimal numbers
4. Parallel versus serial representation
B. Boolean algebra and binary codes
5. Weighted and Nonweighted binary codes
6. Error-detecting and error-correcting codes
7. Truth tables
8. DeMorgan's theorems
C. Logic gates
9. AND/OR/NOT gates
10. NOR/NAND gates
11. Exclusive-OR and exclusive -NOR gates
12. Converting gates using inverters
13. Combining logic gates
D. Combinational logic circuits
14. The Karnaugh map method
15. Sum of product forms
16. Product of sum forms
17. Logic circuits with multiple outputs
E. Flip-flops
18. Clocked flip-flops
19. Triggering of flip-flops
20. Timing considerations
F. Digital arithmetic: operations and circuits
21. Signed numbers
22. Binary arithmetic and hexadecimal arithmetic
23. 1's complement and 2's complement
24. Design a full adder
25. Parallel and serial addition
G. Counters and registers
26. Ripple (asynchronous) counters
27. Parallel (synchronous) counters
28. Up/down counters
29. Shift registers
30. Serial-load and parallel-load shift registers
H. Memory devices
31. General memory operation
32. Semiconductor memory technologies
33. ROM and RAM architecture
I. Introduction to the microprocessor
34. Binary data words
35. Instruction words
36. Machine language
37. Input and output operations
38. Timing and control
39. Arithmetic-logic-unit

V. METHODS OF INSTRUCTION:

A. Lecture
B. Discussion
C. Multi-media
D. Projects
VI. TYPICAL ASSIGNMENTS:
A. Read assigned textbook(s) and manual(s)
B. Analyze problems in binary logic
C. Design simple circuits

1. Sample lab projects
2. Design a 6-input AND gate. Label input as A, B, C, D, E, and F. Label output as Y
3. Design the logic circuit for the Boolean expression: $A^{*} B^{*} C+B * C=Y$
4. Draw a 4-variable product-of-sums type Karnaugh map
D. Build simple circuits
5. Sample lab projects
6. Build simple 2-input adder on the circuit board
7. Build and inverter using one input
E. Discuss special digital problems in class

VII. EVALUATION(S):

A. Binary logic projects

1. One project per week
B. Examinations and quizzes
2. Two exams: midterm and final
3. Weekly quizzes on reading assignments
a) Sample test questions
i) Write the Boolean expression for a 4-input OR gate
ii) Draw the logic symbol for a 4-input AND gate
iii) What would a decoder do in a calculator?
iv) What is the maximum binary count for a 5-bit counter?
v) How many clock pulses would it take to load a 5-bit- serial-load shift register?
VIII. TYPICAL TEXT(S):

Tocci, R. Digital Systems. Prentice Hall, 1996
Tokheim, R. Digital Principles. McGraw Hill, 1990

IX. OTHER SUPPLIES REQUIRED OF STUDENTS: None

